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It is shown that an old and neglected Lukasiewicz (1913) paper contains 
construction of a many-valued logic which can be in an almost straightforward 
way used to describe physical experiments. The logic is infinite-valued and 
its truth values are interpreted as probabilities of experimental confirmation of 
propositions about results of future experiments. In the case of experiments on 
quantum objects the logic is partial, i.e. the existence of conjunctions and 
disjunctions cannot be guaranteed for all pairs of propositions. An outline of 
previous attempts of using many-valued logics in the description of quantum 
phenomena is given. 

1. MANY-VALUED LOGICS IN QUANTUM MECHANICS. 
H I S T O R I C A L  O U T L I N E  

The theory o f  relativity stimulated a growth of  interest in non-Euclidean 
geometries which otherwise would have been treated as mathematical curiosi- 
ties without links to the real physical world. In a somewhat analogous way 
quantum mechanics drew attention to non-Aristotelian (nonclassical) logics. 
However,  the necessity of  using non-Euclidean geometry in the theory o f  
relativity was clearly visible f rom its very beginning, while the idea of  
abandoning classical logic in the description o f  quantum phenomena was not 
so obvious. The birth o f  this idea is usually associated with the paper by 
Birkhoff  and yon Neumann (1936) published when quantum mechanics was 
already a well-established physical theory and, moreover,  this idea is still 
disputed today. 

Actually, the first considerations about basing quantum mechanics on 
many-valued logic were published some years earlier by the Polish logician 
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Zygmunt Zawirski (1931, 1932). Zawirski argued that: " . . .  Niels Bohr com- 
plementarity theory . . ,  stating that wave and corpuscular points of view in 
treating all physical phenomena are equivalent, equally admissible, in spite 
of the fact that these theories are mutually 'excluding' ( ! ) . . .  can be compre- 
hended only on the basis of three-valued logic, since in bivalent logic the 
equivalence of a proposition and its negation is necessarily false." He noticed 
also that: "Heisenberg Uncertainty Principles and statistical character of physi- 
cal laws forces the usage of infinite-valued logic which has to be taken into 
account whenever old 'dynamical' laws are replaced by new laws allowing 
to expect effects with different degrees of probability or, more correctly, with 
different degrees of possibility." 

Unfortunately, neither Zawirski's (1931) paper, which was published in 
Polish in a local journal, nor its enlarged version (Zawirski, 1932) published 
in French in a philosophical journal, Revue de Metaphysique et de Morale, 
attracted much attention among physicists. An American astrophysicist, Fritz 
Zwicky, was more successful: his paper (Zwicky, 1933), published in the 
Physical Review, in which he gave physical arguments against the law of 
excluded middle and in favor of "many-valuedness of scientific truth," was 
much more widely discussed (see Jammer, 1974, pp. 345-346). However, 
the publication of the paper by Birkhoff and von Neumann (1936) soon 
changed the direction of the attack on the usage of classical logic in quantum 
mechanics from challenging bivalence to challenging distributivity of the 
logic underlying quantum phenomena. 

The search for the logical basis of quantum phenomena in the domain 
of many-valued logic was continued from the late 1930s till the early 1950s 
by Paulette F6vrier (e.g., F6vrier, 1937; Destouches-FEvrier, 1951) and Hans 
Reichenbach (1944, 1948, 1951, 1952-1953), both using three-valued logic. 

F6vrier was undoubtly influenced by epistemological papers of a group 
of contemporary philosophers (G. Bachelard, E Gonseth, E Hertz, L. Rougier) 
for whom logic was an empirical science which may be changed when new 
experimental results are obtained. She introduced, besides two ordinary truth 
values ("true" and "false") ascribed to propositions which, when checked 
experimentally, yield sometimes true and sometimes false judgements, a 
third truth value, "absolutely false." This third truth value she ascribed to 
propositions which can never, by their very nature, be confirmed by an 
experiment. For example: "the energy E has value E0" when E0 does not 
belong to the energy spectrum. She used two different truth-tables for the 
conjunction of propositions about quantum systems, depending upon whether 
propositions were associated with commuting or noncommuting observables. 
In the first case her truth-table was identical with the truth-table for the 
conjunction used by Lukasiewicz (1920) in his three-valued logic. In the 
second case she argued on the basis of the Heisenberg uncertainty relations that 
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the conjunction of propositions associated with noncommuting observables is 
always "absolutely false." 

The best-elaborated and most widely discussed attempt at explaining 
quantum phenomena on the basis of three-valued logic was published by 
Hans Reichenbach (1944) in his book, Philosophic Foundations of Quantum 
Mechanics. He distinguished between phenomena = microphysical events 
connected with macroscopic events by "rather short causal chains" and inter- 
phenomena = interpolations between phenomena without direct manifestation 
in the form of a macroscopic effect. To illustrate this division, let us consider 
a typical two-slit experiment, which, according to Feynman's well-known 
words, contains at its heart the whole mystery of quantum mechanics. Emis- 
sion of a quantum object by a source and its absorption on a screen are 
phenomena, while its "path" between the source and the screen, i.e., all of 
what adherents to the orthodox Copenhagen interpretation forbid even speak- 
ing about, belongs to the domain of interphenomena. Reichenbach argued 
that if someone wants to go beyond the Copenhagen interpretation, i.e., if 
someone wants to describe interphenomena as well as phenomena believing 
that they are governed by the same laws of nature, then application of bivalent 
logic inevitably leads to causal anomalies which vanish when bivalent logic 
is replaced by three-valued logic. According to Reichenbach the third truth- 
value indeterminate should be treated ontologically and should not be con- 
fused with macroscopic epistemological unknown. 

Logical operations were defined in Reichenbach's three-valued logic 
independently of one from another, not as in Lukasiewicz' (1920) three-valued 
logic, where Lukasiewicz began with assuming truth-tables for negation 
and implication and defined other operations with their aid. Reichenbach 
considered three types of negation, three types of implication, two types of 
equivalence, conjunction, and disjunction, out of which one type of negation 
(called by Reichenbach diametrical), implication, and equivalence (called 
standard), conjunction, and disjunction were identical with those of Lukasie- 
wicz (1920). 

Reichenbach's proposal of using three-valued logic, advocated after his 
death by Hilary Putnam (t957) evoked much wider discussion than any 
other attempt at utilizing many-valued logic in the foundations of quantum 
mechanics, but critical voices prevailed (see Jammer, 1974, pp. 368-375). 
The same was the attitude of physicists to yon Weizslacker's (1958) "comple- 
mentarity logic" with complex truth values obtained directly from the mathe- 
matical formalism of Hilbert-space quantum mechanics. 

Many-valued logics came back to the foundations of quantum mechanics 
through the back door together with fuzzy set theory. Initially this return 
remained unnoticed, although it was clear nearly from the very birth of fuzzy 
set theory that infinite-valued Lukasiewicz logic is related to fuzzy sets in 
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the same way as bivalent logic is related to traditional ("crisp") sets (Giles, 
1976). In the late 1980s a group of Slovak mathematicians and, independently, 
the present author noticed the remarkable similarity of some families of 
fuzzy sets to quantum logics in the Birkhoff-von Neumann sense, i.e., to 
orthomodular posets or lattices (Pykacz, 1987a,b; Rie~an, 1988; Dvure~enskij 
and Rieran, 1988; Dvure~enskij and Chovanec, 1988). This observation began 
a continuous flow of papers, the number of which exceeds now 150 [unfortu- 
nately, published mostly in local and/or mathematical journals; see Pykacz 
(1992, 1993) and Cattaneo et al. (n.d.) for bibliographical references] and 
which can be treated as belonging to the domain of "fuzzy quantum logic." 

Families of fuzzy sets can be endowed with various sums and products 
implied by various connectives of infinite-valued Lukasiewicz logic (Giles, 
1976). Some of these operations, like the most frequently used original Zadeh 
(1965) ones, are distributive and, therefore, are not very well suited for 
description of quantum systems. However, operations on fuzzy sets called 
by Giles (1976) bold intersection and bold union, the logical roots of which 
can be also traced back to Lukasiewicz (Giles, 1976; Pykacz, 1992; cf. also 
Frink, 1938), are not only nondistributive, but also satisfy a formal counterpart 
of the orthomodular identity (Pykacz, 1994). Moreover, these operations 
allow one to define "fuzzy quantum logic" which is an orthomodular poset, 
i.e., a quantum logic in the Birkhoff-von Neumann sense. This definition 
can be further translated into the language of infinite-valued Lukasiewicz 
logic (Pykacz, 1994, n.d.-a). Therefore, these last results combine two features 
which, according to various authors, should distinguish the logic that underlies 
quantum mechanics from classical logic: many-valuedness advocated by 
Zawirski already in 1931 and nondistributivity dominating in the quantum 
logic approach since Birkhoff and von Neumann. 

2. LOGICAL FOUNDATIONS OF EXPERIMENTAL THEORIES 

2.1. Introduction 

In 1913 Jan Lukasiewicz published a paper the English title of which, 
"Logical foundations of probability theory," is paraphrased as the title to the 
present section. In this paper [N.B.: published 20 years before Kolmogorov's 
(1933) fundamental textbook on probability theory] his aim was to clarify 
the notion of probability which was at that time still alien to the rest of "well- 
established" mathematics by reducing it to the notions of many-valued logic. 
In particular, he defined the probability that a proposition would turn out to 
be true as its truth-value, while nowadays, since probability theory belongs 
to the mathematical canon while many-valued logic still does not, it is more 
natural to reverse this order. This is actually done in the present paper. 
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Let us also notice that Lukasiewicz (1913), although aimed at clarifying 
the foundations of probability theory, is actually his first paper on many- 
valued logics. This falsifies the widespread belief that Lukasiewicz began 
his studies of many-valued logics in the early 1920s (Lukasiewicz, 1920). 
However, Lukasiewicz (1913) differs a lot from his later papers on many- 
valued logics, which are distinguished by their precision and mathematical 
elegance to the extent that, especially in his later papers (cf. Lukasiewicz, 
1970) their main parts boil down to strings of formulas. This "early Lukasie- 
wicz" paper is much less precise and transparent. In this paper intuitive 
arguments are sometimes used instead of formal ones, formulas valid in 
bivalent logic but not necessarily valid in many-valued logic are sometimes 
assumed without checking, and definitions of some important notions have 
to be extracted from the context. Nevertheless, Lukasiewicz (1913), despite 
its flaws, or maybe even because of its flaws, since they make its language 
more similar to the language used by experimentalists, contains ideas which 
can be in a nearly straightforward way applied in the description of any 
experiment. To show this I shall maintain as far as possible the formal 
similarity of the rest of this section to the most important first part of Lukasie- 
wicz (1913) by keeping its order and argumentation. I shall use, whenever 
possible, Lukasiewicz' original formulations (his exact words written in italic) 
adopting them to my aim: statements about results of experiments. In the 
case of necessary deviations from Lukasiewicz' original formulations his 
exact words will be quoted inside square brackets. Quotations are taken from 
the English translation of Lukasiewicz (1913) contained in the collection of 
his selected papers (Lukasiewicz, 1970) and will be preceded by page numbers 
referring to this book. 

2.2. Indefinite Proposi t ions  

(p. 16) I call indefinite those propositions which contain statements 
about results of not-yet-performed experiments [a variable]. For instance, 
"detector will click in the next run of an experiment," "SchrOdinger's cat 
will be found alive 1 hour after closing the box" ["x is an Englishman, . . . .  x 
is greater than 4"]. 

I shall consider hereafter only those indefinite propositions for which 
there exist well-defined experimental procedures allowing one to check them 
[in which the values of the variables range over a well-defined finite class 
of  individuals]. 

I f  a run of an experiment is completed [in an indefinite proposition we 
substitute the variable for one of its values] we obtain a definite singular 
judgement which is either true or false. For instance "detector clicked," 
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"SchrOdinger's cat was found alive 1 hour after closing the box ''2 ["5 is 
greater than 4," "3 is greater than 4"]. 

2.3. Truth  Values 

(p. 17) By the truth value of an indefinite proposition I mean the probabil- 
ity that it will yield, when checked experimentally, a true singular judgement 
[ratio between the number of values of the variables for which the proposition 
yields true judgements and the total number of values of the variables]. 

It is clear that the original Lukasiewicz definition is actually identical 
with the "classical definition of probability" if one assumes that all values 
of the variables are equiprobable. In the year 1913 Lukasiewicz could not 
have used Kolmogorov's (1933) abstract definition of probability; moreover, 
his aim was to explain the notion of probability by logical notions, not vice 
versa. Therefore, only on p. 48, after long considerations, does he come to 
the conclusion, which we can adopt literally: 

(p. 48) The degree of probability of an indefinite proposition is identical 
with its truth value. 

Nowadays we are fully acquainted with the notion of probability. More- 
over, the theory whose logical foundations are the main objective of this 
paper, quantum mechanics, seems to be probabilistic by its very nature. 
Therefore, I do not assume that in order to determine truth values of indefinite 
propositions one really has to repeat experiments many times, calculate fre- 
quencies of results, and adopt them as truth values (believing that frequencies 
converge to probabilities when the numbers of runs go to infinity). On the 
contrary, I assume the full freedom in using predictive powers of the best 
contemporary theories to calculate probabilities = truth values of indefinite 
propositions, since by the words "experimental theories" used in the title of 
this section 1 mean theories whose predictions can be, at least in principle, 
verified experimentally. 

2.4. Implication 

(p. 17) The relation of implication, or the relation between reason and 
consequence, holds between two indefinite propositions a and b if for every 
pair of  runs of experiments designed to check a and b [values of the variables 
occurring in a and in b] either the reason a yields a false judgement or the 
consequence b yields a true judgement. 

Let us note that the traditional (Birkhoff-von Neumann type) quantum 
logical "implication," usually identified with partial order, is also a relation 

2 Future tense used for indefinite (experimental) propositions and past tense for definite singular 
judgements help to distinguish them and make the whole issue more clear. Thanks are due 
to Dirk Aerts for reassuring me on this idea. 
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which holds between some pairs of propositions, not an operation which 
could be performed on an arbitrary pair of them. However, the relation of 
implication defined above concerns results of individual runs of experiments. 
Therefore, it should be "stronger" than the partial order relation of Mackey 
(1963) type defined on a traditional quantum logic in a "statistical" way, i.e., 
with the aid of a probability measure. I shall show in the sequel that this is 
really the case. 

We can distinguish, following Lukasiewicz, three cases when the relation 
of implication between indefinite propositions a and b holds: Two obvious 
cases when either the reason a yields false judgements or the consequence 
b yields true judgements in every run of an experiment designed to check it 
(the results of an experiment which checks the other proposition are in these 
two cases irrelevant), and the third case when: 

(p. 17) Neither the reason a yields false judgements in every run of an 
experiment designed to check it [for all values of  its variables] nor the 
consequence b yields true judgements in every run of an experiment designed 
to check it [for all values of  its variables[. Then the statements a and b must 
be checked in the same experiment [contain the same variable x] and all 
runs of this experiment [values of  x] which verify the reason a must verify 
the consequence b. 

~ukasiewicz argued that if a and b contained different variables, then 
one could always choose independently their values in such a way that a 
would yield a true singular judgement and b a false singular judgement, 
contrary to the adopted definition. The same considerations can be applied 
to our "experimental" case: if a and b were checked in two independent 
experiments with uncorrelated results, then we could combine their results 
at will to find a pair of results for a and b which would not fulfill the 
conditions of the adopted definition of the relation of implication. 

Lukasiewicz' relation of implication establishes a deductive link between 
singular judgements obtained from its precedent and consequent, which was 
stressed by Lukasiewicz by calling it the relation between reason and conse- 
quence. If a is a reason for b, i.e., if the relation of Lukasiewicz implication 
between a and b holds, then from the truth of any singular judgement obtained 
from a we deduce that a singular judgement "simultaneously obtained" from 
b is necessarily true. However, this link does not have to be causal (although 
it can be), which is shown by the following example. 

Example 1. Let an experimental arrangement consist of a source which 
emits spin-l/2 particles and two perpendicularly oriented Stern-Gerlach (SG) 
apparata in such a configuration that only those particles which leave the 
first SG apparatus by its "up" channel enter the second SG apparatus. Let 
aup (adown) be the indefinite proposition "a particle will leave the second SG 
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apparatus by its 'up' (resp. 'down') channel" and bup be the proposition "a 
particle will leave the first SG apparatus by its 'up' channel." Obviously 
according to the Lukasiewicz definition both aup and adown imply bup, since 
in no run of an experiment can a particle be found in the "up" or "down" 
channel of the second SG apparatus without leaving the first SG apparatus 
by its "up" channel. However, leaving the second SG apparatus by any of 
its outgoing channels is obviously not a cause for (actually, in the given 
experimental arrangement it is a result of) previously leaving the first SG 
apparatus by its "up" channel. 

This example shows also that the relation of Lukasiewicz implication 
can hold between two indefinite propositions predicting the results of two 
experiments on the same quantum object even if observables measured in 
these experiments do not commute. 

2.5. Theorem on the Truth Value of  a Reason 

(p. 19) The truth value of a reason cannot be greater than the truth 
value of the consequence. 

If we adopt symbols used in Lukasiewicz (1913), a < b to denote that 
the relation of implication holds between indefinite propositions a and b, and 
w(a) to denote the truth value of a proposition a, then this theorem can be 
written symbolically: 

(a < b) ~ [w(a) --< w(b)] (1) 

where ~ denotes ordinary bivalent implication, since bivalent logic is obvi- 
ously a metalogic for the infinite-valued logic of indefinite propositions. 

Lukasiewicz proved this theorem by counting numbers of values of the 
variables for which a reason a and a consequence b yielded true singular 
judgements. He could do this since he assumed these numbers to be finite, 
but we can also do it if we believe that frequencies converge to probabilities 
when the numbers of runs of experiments go to infinity, which is a general 
belief among physicists. 

In general, theorem (1) cannot be reversed: if indefinite propositions a 
and b are checked in two independent experiments the results of which are 
not correlated, then "statistical" inequality w(a) <- w(b) says nothing about 
results of particular runs of these experiments. Therefore, it may happen that 
in some pairs of runs of these experiments a would yield a true and b a false 
singular judgement, so a would not be a reason for b. This justifies the claim 
that the Lukasiewicz relation of implication is stronger than the partial order 
relation of Mackey type on a traditional quantum logic: if the formula (1) is 
valid in any state of a physical system, then it establishes partial order of 
Mackey type between indefinite propositions a and b. Therefore, in our 
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approach the link between the relations of partial order and implication is 
opposite to the quantum logic tradition originated by Husimi (1937): the 
partial order relation does not define, but is defined by the relation of implica- 
tion between propositions. 

Lukasiewicz justified the following statement, which he called theorem 
on the truth value of a reason, again by counting in a specific example numbers 
of values of the variables which satisfy the reason a and the consequence b. 
Actually this statement is not a theorem, but an axiom of his calculus, which 
he explicitly stated a little bit later. 

(p. 20) The truth value of a reason, attgmented by the truth value of the 
logical product of the negation of the reason and of the consequence, equals 
the truth value of the consequence. 

2.6. Negation, Logical Product, Logical Sum, and Equivalence 

In the theorem on the truth value of a reason Lukasiewicz introduced, 
in passing, two new important notions: negation and logical product of 
indefinite propositions. He gave no explicit definitions of these notions; 
however, it can be inferred from the context that by the negation of an 
indefinite proposition a he meant an indefinite proposition a'  which yields 
a false (true) singular judgement whenever a yields a true (resp. false) singular 
judgement. This is a familiar way of introducing negation in the traditional 
quantum logic. Lukasiewicz noticed also that 

(p. 20) . . .  the truth value of any indefinite proposition plus the truth 
value of its negation, equals 1 . . . .  

This, when negation is represented by orthocomplementation and truth 
values are replaced by values of probability measures, is again a generally 
accepted quantum logic formula. 

The notion of the logical product ab of indefinite propositions a and b 
used by Lukasiewicz (1913) seems to arise from the bivalent conjunction 
applied to singular judgements obtained from a and from b. However, this 
can be again inferred only from the example studied on p. 19, at the end of 
which he wrote: 

(p. 19) . . .  "x is different from 6 and greater than 3" . . .  In algebraic 
logic, such propositions, connected by the word "and" are called logical 
products. 

I think, taking into account the way in which Lukasiewicz defined the 
relation of implication, that the exact definitions of the logical product and 
the logical sum (which he introduced in the same vague way on p. 20) could 
be formulated as follows: 

The logical product of two indefinite propositions a and b is an indefinite 
proposition ab which yields a true singular judgement if and only if both 
propositions a and b yield true singular judgements. 
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The logical sum of two indefinite propositions a and b is an indefinite 
proposition a + b which yields a true singular judgement if and only if at 
least one of propositions a, b yields a true singular judgement. 

We see that contrary to the relation of implication, negation, logical 
product, and logical sum are operations on indefinite propositions. However, 
while the operation of  negation is always defined, in the case of logical 
products and sums we encounter the first difference between Lukasiewicz 
(1913) original logic dealing with statements containing free variables and 
his logic adopted to describe experiments on quantum objects. 

In the case of  the original Lukasiewicz (1913) logic, simultaneous replac- 
ing of different free variables by their specific values was always possible, 
while simultaneous checking of different indefinite propositions which predict 
the results of  quantum experiments sometimes cannot be performed: 

Example 2. Let S be a source of photons linearly polarized in the direction 
Xs, let PA and PB be linear polarizers oriented, respectively, in the directions 
XA and xB, and let all three directions Xs, XA, and XB be different. If  a (b) is 
an indefinite proposition "photon emitted by S towards PA (resp. Pe) will 
pass through it," then neither the logical product, nor the logical sum of a 
and b can be formed, since the experimental arrangement does not allow us 
to check them simultaneously. 3 

Therefore, Lukasiewicz'  (1913) logic applied to the description of experi- 
ments on quantum objects is a partial logic in which logical products and 
sums are not always defined. 

Lukasiewicz defined the equivalence of two indefinite propositions as 
follows: 

(p. 20) . . .  the equivalence a = b is identical with the logical product 
of (a < b)(b < a) and means: "from a follows b and from b follows a ". 

However, since a < b and b < a are bivalent metalogical statements 
which are true or not depending on whether the relation of Lukasiewicz 
implication between a and b holds or not, the equivalence defined by Lukasie- 
wicz is also a relation between indefinite propositions, not an operation on 
them. Moreover, the word "identical" used by Lukasiewicz obviously means 
"equivalent in the traditional bivalent logic" or "metalogically equivalent." 
Therefore, the definition of Lukasiewicz' (1913) relation of equivalence 
should be symbolically written as follows: 

3Let us note that if in this example photons are replaced by bullets and polarizers by targets, 
we obtain a "classical quantum-like situation" of a type studied by Aerts [see Aerts (1981) 
and many of his subsequent papers]. As far as the property "passing through a target" is 
concerned, bullets are indivisible objects (a fragment of a bullet does not have this property 
to the same extent as a whole bullet), which is in contradiction to the paradigm of classical 
physics (objects are infinitely divisible and their properties are hereditary). Therefore, bullets 
with respect to this property are "quanta" in the very original sense of this word. 
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(a = b) r [(a < b) & (b < a)] (2) 

where r and & denote, respectively, classical (bivalent) equivalence and 
conjunction. 

3. THE CALCULUS OF TRUTH VALUES 

In order to keep the length of the present paper within reasonable limits, 
technical details of its last two sections are skipped and given in a forthcoming 
paper (Pykacz, n.d.-b). In the foregoing quotations from Lukasiewicz (1913) 
his original symbols are in several formulas replaced in some places by 
metalogical (bivalent) symbols in order to make the formulas clearer. 

3.1. Principles of  the Calculus  

(p. 21) The calculus of  truth values is based on the following three 
principles: 

I (a = 0) r162 [w(a) = 0] (3) 

II (a = 1) r [w(a) = 1] (4) 

III (a < b) ~ [w(a) + w(a'b) = w(b)] (5) 

. . .  Within the calculus of  truth values they play the role of  axioms. 
0 and 1 in the left-hand sides of metaequivalences I and II denote 

indefinite propositions which yield, respectively, always false and always true 
singular judgements. Such indefinite propositions were called by Lukasiewicz 
(1913) simply false and true, while the other indefinite propositions were 
called neither true nor false. The metaimplication III expresses what Lukasie- 
wicz called previously theorem on the truth value of  a reason. Let us note 
that even in the case of indefinite propositions about results of experiments 
on quantum objects, due to considerations contained in Section 2.4, the logical 
product a'b appearing in the consequent of the metaimplication III is defined 
whenever a < b holds. 

3.2. Theorems  

Among many results which can be proved on the basis of the adopted 
definitions and axioms, the following ones deserve special attention: 

(a' < b) ~ [w(ab) = w(a) + w(b) - 1] (6) 

(a < b') ~ [w(a + b) = w(a) + w(b)] (7) 

Consequents of these metaimplications can be easily recognized as 
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"parts" of the formulas yielding truth values of conjunction and disjunction 
already studied by Frink (1938): 

"rCa and b") = max['r(a) + -r(b) - 1, 0] (8) 

"r("a or b") = min['r(a) + "r(b), 1] (9) 

Later these formulas were used within the fuzzy set theory by Giles (1976) 
to define products and sum of fuzzy sets different from the most frequently 
used Zadeh (1965) operations. Operations on fuzzy sets defined by Giles 
(1976) were in turn extensively used by the present author (Pykacz, 1990, 
1993, 1994) in attempts to define fuzzy quantum logic exclusively with the 
aid of a triple of operations consisting of intersection, union, and complement 
for which the De Morgan laws hold. Such a "homogeneous" definition was 
finally given in (Pykacz, 1994). It should be stressed, however, that the 
present approach based on Lukasiewicz (1913) is different because of the 
basic requirement that relations between propositions and operations on them 
should be defined "operationally," which makes the resulting logic a par- 
tial logic. 

3.3. The Law of Addition 

The following law of  addition: 

(p. 24) (ab = O) ~ [w(a + b) = w(a) + w(b)] (10) 

was proved by Lukasiewicz (1913) with the aid of distributivity of his logical 
product and sum, which in the case of his indefinite propositions containing 
free variables actually holds. In the case of indefinite propositions about 
results of experiments on quantum objects distributivity cannot be assured. 
Nevertheless, the law of addition (10) can be in this case proved due to the 
following lemma: 

(ab = 0) r (a' < b) (11) 

The problem becomes more serious if we want to generalize the law of 
addition to more than two propositions. Lukasiewicz noticed: 

(p. 24) The law of  addition can, on the strength of  mathematical induc- 
tion, be extended so as to cover more than two propositions. The following 
holds: 

(~i,j aiaj : O) ~ [w(~i ai) : ~i  w(ai)] (12) 

ira j ,  i =  1,2 . . . . .  n, j =  1,2 . . . . .  n 

Distributivity of the logical product and sum, which cannot be guaranteed 
for indefinite "quantum" propositions, seems to be essential in passing from 
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(10) to (12). However, the "generalized law of addition" (12) resembles so 
much the familiar formulas expressing cr-additivity of probability measures 
on ~-orthocomplete orthomodular posets that it seems worth adopting it, 
when it cannot be proved, as an axiom. 

4. L I N D E N B A U M - T A R S K I  A L G E B R A  OF A T H E O R Y  W I T H  
L U K A S I E W I C Z  LOGIC OF INDEFINIT E  P RO P O S ITIO N S  

The standard construction of the Lindenbaum-Tarski algebra of a theory 
consists in identifying equivalent propositions and defining partial order with 
the aid of implication. Meets, joins, and complements should then be generated 
by operations of conjunction, disjunction, and negation, and they should of 
course agree with previously defined partial order. Lindenbaum-Tarski alge- 
bra of a "classical" theory with Lukasiewicz ( 1913) logic of indefinite proposi- 
tions in which logical product and sum of arbitrary propositions is always 
defined is a Boolean algebra. In the case of "nonclassical" theories satisfying, 
however, the "generalized law of addition" (12) the resulting Lindenbaum- 
Tarski algebra is an orthomodular poset which is ~r-orthocomplete when in 
(12) finite sums are replaced by countable ones. Lengthy proofs of these 
results will be published elsewhere (Pykacz, n.d.-b). 
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